只要在三维时空中的物体,就必然会存在长宽高这三个维度属性,泽树就是最明显的例子,泽树的认知世界局限在一维,通过侧面认识到了二维,但真实的时空是三维,它们并不会因为认知没有达到三维而失去第三维的物理属性,只是它们不曾发觉罢了。
因此,假设宇宙中存在着比三维更高的维度,那采集者们必然是具备着高维属性,只是过去不曾发觉到而已。
“但问题是,这个代表着正立方体平面的高度是什么呢”
话题回归正轨,采集者们将注意力都聚焦到低维倦缩后,已经成为一个平面的三维正方体。
它们现在需要找到这个正方体在高维的高度,只要完成这个,也就可以完成对第四维度的发现。
采集者们探讨了好一会,最终拍板决定。
“让宇宙来告诉我们,这个高度是什么,用氢原子制造出一个等同的实体立方出来,每个氢核对应一个坐标点,做到百分百对应模拟立方,然后再给当前的模拟平面导入该实体立方的其他物理参数,这样应该就能知道高度了。”
通过实物和物理模型的对比,然后基于实物的物理数据导入被模拟的物理模型中,或许可以有新的发现。
采集者们不敢打包票肯定能有所发现,因为失败已经不是一次两次,科学探索本来就是在一次次的尝试和收集数据中找到通往正确的道路。
以采集者们目前的工业技术水平,想要制造出一个与物理模型中正方体对应的实物正方体,虽然有难度,但并不是办不到。
通过压强巨构,制造一片片的质子晶格体,然后再进行强压拼合,就可以得到一个由氢核组合而成的正方体,正方体中的每个氢核与物理模型中的每个坐标点对应,收集每个氢核的物理属性,导入坐标点中,就可以得到一系列的物理模型。